DNAi DVD CONTENTS

Themes	1
DNA molecule	1
DNA in action	2
Genetics to genomics	2
Human genetics	3
Ethics & implications	4
Reflecting on science	5
Animations	6
Interviews	6
Background briefing	9

THEMES

• DNA MOLECULE •

Discovery of DNA

A pre-1953 notion DNA is the genetic material Chargaff's ratios Race to discover the structure

Clue: position of phosphates An earlier DNA model

Clue: X-ray diffraction

The answer DNA: the secret of life DNA: the key to understanding

Structure of DNA

An elegant structure Replication models The correct model

Replicating the helix Mechanism of replication How DNA is packaged

Organization of DNA

Billions of bases Chromosome map 100 km of DNA Walking down a chromosome Coding vs. non-coding How much DNA codes for protein? An important gene cluster Bacterial vs. human genome

www.dnai.org

_ biology prior to discovery of the double helix ... François Jacob

- _ the experiment that identified DNA as the genetic material . . . Maclyn McCarty
- _ the DNA base ratio rules ... Erwin Chargaff
- _ the race between King's College, London, and other groups to define the structure of DNA ... Raymond Gosling
- _ realizing phosphates are on the outside of the structure . . . Raymond Gosling
- _ Franklin's analysis of Watson and Crick's early model of DNA ... Raymond Gosling
- _ how the X-ray diffraction camera works ... Raymond Gosling
- _ the X-ray diffraction picture that revealed the helix ... Maurice Wilkins
- _ working out the structure of DNA ... Jim Watson
- _ on his and Francis Crick's gigantic breakthrough ... Jim Watson
- _ why the discovery of DNA's structure was so important . . . Francis Crick

_ the elegant simplicity of Watson and Crick's model . . . Raymond Gosling

- _ the different models proposed for DNA replication . . . Matthew Meselson
- _ Meselson and Franklin Stahl's experiment to determine the correct DNA replication mode ... Matthew Meselson
- _ animation
- _ animation
- _ animation
- _ there are 2.9 billion letters in the human genome ... Mark Adams _ animation
- _ the length of the human genome ... John Sulston
- _ traveling down the genome ... Ewan Birney
- _ how much of the genome is active? ... Jim Kent
- _ animation
- _ a cluster of immunity genes on chromosome six ... Jim Kent
- _ human genes are organized in patches of information . . . Eric Lander

DNA Interactive

• DNA IN ACTION•

The genetic code

The digital code The coding problem DNA has four units Defining the gene 3 DNA bases = 1 amino acid

Code analogies Triplet code Cracking the first codon Cracking the code Universal code

_ DNA is a digital code that can be read ... Lerov Hood

- _ the problem posed by Watson and Crick's model ... Sydney Brenner animation
- matching the gene to protein sequence ... Sydney Brenner
- the mathematician George Gamow's idea that three DNA bases encode one amino acid ... Marshall Nirenberg
- _ the idea of applying a code to DNA sequence ... Sydney Brenner _ animation
- deciphering the first amino acid codon ... Marshall Nirenberg
- _ deciphering every triplet code ... Marshall Nirenberg

DNA makes RNA makes protein ... Jim Watson

all forms of life use the same genetic instructions ... Marshall Nirenberg

The Central Dogma & gene expression

The Central Dogma & gene expression **Protein synthesis** The role of the ribosome Transcription Explaining the Central Dogma

RNA splicing Processing mRNA Translation Gene regulation The lac operon model

Mutation & evolution

Random mutations Sickle cell DNA damage Junk DNA & evolution Humans & chimps **Regulatory networks Differences & similarities Evolutionary relationships** Smell receptors What came first: DNA or RNA?

• GENETICS TO GENOMICS•

Key experiments & techniques

Polymerase chain reaction **DNA** variation **DNA** fingerprinting

First recombinant DNA Mechanism of recombination Microarray analysis DNA transfer: agrobacterium DNA transfer: gene gun

- www.dnai.org

_ discovery of the PCR technique ... Kary Mullis

- _ measuring DNA variation: techniques and applications ... Mark Skolnick
- _ using minisatellites (tandem DNA repeats) to create unique genetic profiles ... Alec Jeffreys
- _ describing the first experiment with recombinant DNA ... Paul Berg
- animation
- studying gene expression using microarrays ... Pat Brown
- _ transferring genes into plant cells using agrobacterium . . . Robert Horsch
- inserting genes into plant cells using a gene gun ... Robert Horsch

© Copyright 2003, Dolan DNA Learning Center, Cold Spring Harbor Laboratory. All rights reserved. Dolan

- _ synthetic RNA stimulates protein synthesis ... Marshall Nirenberg ribosomes recognize a triplet code ... Marshall Nirenberg _ animation _ the mechanism of protein synthesis and the virus (phage) experiment that proved it ... Sydney Brenner _ RNA is spliced ... Tom Cech _ mRNA editing by the spliceosome ... Eric Lander animation
- _ the regulation of genes by control proteins ... Walter Gilbert
- his model for bacterial gene regulation ... François Jacob
- _ random mutations are necessary for evolution ... Jim Kent
- _ animation
- _ animation
- _ junk DNA may have important evolutionary functions ... Eric Lander
- _ humans and chimps share around 99% of their DNA ... Mary-Claire King
- _ the importance of regulatory systems for evolution ... Leroy Hood
- _ DNA variations result in differences between individuals . . . Robert Plomin
- _ the conservation of life processes ... John Sulston
- every gene has a distinctive evolutionary history ... Eric Lander
- evidence that RNA evolved before DNA ... Tom Cech

Key experiments & techniques

Sequencing DNA Sequencing genomes

Advances & applications

Cross-species recombination Birth of genetic engineering

The impact of cloning Cloning DNA in bacteria Risks of DNA recombination Lab safety

Insulin production First transgenic crop Cotton plants GM crop concerns

The Human Genome Project

The aim The motivation Public & private Public project sequencing Assembling the fragments Private project sequencing Reading the genome The completed genome Outcome of the HGP After the HGP

Bioinformatics

An overview Solving a problem Computing power Analyzing your genes Proteomics Implications for the future

• HUMAN GENETICS •

Disease research

The challenge of gene hunting Locating disease genes Impact of the genome projects Animal models The DMD approach

Gene expression patterns Gene switches Gene manipulation

- www.dnai.org

(... continued)

- _ inside a DNA sequencing machine ... Leroy Hood
- _ the speed of sequencing since automation ... Mike Hunkapiller
- $_$ first experiment to recombine DNA from different species . . . Stanley Cohen
- _ significance of his experiment with Stanley Cohen to clone toad DNA ... Herbert Boyer
- _ the implications of cloning mammalian genes ... Herbert Boyer
- _ importance of being able to clone DNA using bacteria ... Paul Berg
- _ potential risks associated with recombining DNA ... Robert Pollack
- _ demonstrating the P4 lab containment suit he developed for working with high risk substances ... Emmett Barkley
- $_$ the Genentech method of producing \hdots . David V. Goeddel
- _ the first transgenic crop, engineered by Monsanto ... Robert Horsch
- _ cotton plants engineered to be pest resistant ... Jim Watson
- _ raising concerns associated with GM crop production ... Jim Kent
- _ the aim of the Human Genome Project ... Jim Watson
- _ the justification for the Human Genome Project ... Francis Collins
- _ comparing methods used by the public and private teams . . . Gene Myers
- _ animation
- $_$ problems assembling the genome fragments \hdots . . . Jim Kent
- $_$ animation
- _ interpreting the completed human genome sequence ... Ewan Birney
- _ the completion of the draft human genome sequence . . . William J. Clinton
- a new paradigm for studying biology ... Eric Lander
- _ a new foundation for science ... J. Craig Venter
- $_$ using computers to assemble genomes and interpret data . . . Gene Myers
- _ developing the tools to sequence the genome ... J. Craig Venter
- _ computational power of a processing farm ... Ewan Birney
- _ understanding the genome will lead to medical advances . . . Leroy Hood
- _ studying proteins to understand disease ... Scott Patterson
- _ new tools for redesigning life ... Leroy Hood
- _ the challenge of finding a disease gene ... Francis Collins
- _locating disease genes using markers ... David Botstein
- _ the increased speed of gene searching ... Ewan Birney
- _ using mouse models to study disease ... Mario Capecchi
- _ gene replacement therapy in Duchenne muscular dystrophy (DMD) ... Kay Davies
- _ gene expression patterns in diseased cells ... Pat Brown
- _ switching genes on and off to study disease ... Mario Capecchi
- _ using embryonic stem cells to make mouse models . . . Mario Capecchi

Disease research

Living with sickle cell Inheriting sickle cell

Work on cancer

Mutations & cancer Tumor growth Cancer genes Early cancer studies Finding cancer genes

Using family trees Identifying BRCA1 Looking for BRCA2 Limitations of testing Hopes for the future

Screening & treatment

Leukemia: the Gleevec story How Gleevec works Gleevec: first trials Developing other cancer drugs More questions than answers Genetic screening Offering options Testing for a reason

Behavioral genetics

Genetic pre-wiring Nature vs. nurture Complex behavior Twin studies Prediction & prevention Heritability of behaviors Mental illness & creativity Basis of complex disorders

<u>Human origins</u>

Neandertal DNA

Neandertal & human ancestry Counting DNA mutations

Tracking human history

The evolutionary puzzle The divergence of Neandertals

A recent common ancestor

Classification and value

→>- www.dnai.org

(... continued)

- _ how sickle cell has affected her life ... Katreece McGhee
- _ how she inherited sickle cell ... Katreece McGhee
- _ cancer is caused by an accumulation of mutations ... Bruce Ames _ animation
- $_$ describing tumor suppressors and oncogenes \ldots . Mike Wigler
- _ studying cancer prior to understanding its mechanisms . . . Mary-Claire King
- _ searching for candidate genes in families with breast cancer ... Mary-Claire King
- _ identifying and tracking genetic markers using family trees . . . Barbara Weber
- _ finding and cloning the first breast cancer gene: BRCA1... Mark Skolnick
- _ finding the second breast cancer gene: BRCA2 ... Mark Skolnick
- _ current status of testing for cancer genes ... Mary-Claire King
- _ hopes for cancer treatments ... Mary-Claire King
- _ the development of Gleevec, a drug to treat leukemia . . . Brian J. Druker _ animation
- _ the first patient in the Gleevec trials ... Bud and Yvonne Romine
- _ applying the Gleevec model to other cancers ... Brian J. Druker
- _ approaching population screening with caution ... Francis Collins
- _ setting up a screen for muscular dystrophy ... Kay Davies
- _ importance of choice regarding genetic testing ... Kay Davies
- _ schizophrenia: a case for testing ... Kay Jamison
- _ behavior can be both genetically pre-wired and learnt . . . Hubert Markl
- _ how much of our behavior can be attributed to genes? . . . Robert Plomin
- _ the honeybee as a model for complex behavior ... Hubert Markl
- _ the genetic basis of cognitive traits ... Robert Plomin
- _ predicting and preventing behavioral problems ... Robert Plomin
- _all behavioral traits have a heritable component ... Robert Plomin
- _ genetic links between mental illness and creativity ... Kay Jamison
- _ understanding the genetic basis of complex traits ... Robert Plomin
- _ comparing Neandertal and modern human mitochondrial DNA ... Svante Pääbo
- _ human origins and our common ancestry with Neandertals . . . Svante Pääbo
- _ why the number of mutations in mitochondrial DNA is an underestimate ... Mark Stoneking
- _ using the Y chromosome and other genomic regions to track human history ... Michael F. Hammer
- _ genetic data must be part of a framework ... Michael F. Hammer
- _____fossil evidence shows that Neandertals diverged from modern humans ... Chris Stringer
- _ mitochondrial DNA confirms a recent common ancestor for modern humans ... Douglas Wallace
- _ confounding genetic classification with human worth . . . Hubert Markl

• ETHICS & IMPLICATIONS •

Eugenics

Sterilization as a welfare reform Pre-WWII German eugenics American perspective The Buck vs. Bell case Reactions to imperfections Who should decide? Directing our evolution Classification and value

Diversity & enhancement

None of us are perfect Vanilla children Designer babies Weeding out disease Harrington family A case for testing Protecting diversity A better understanding

Ownership & access

Patenting living organisms Selecting genes to patent Patenting chaos Commercial patents Human genome patents A free flow of information

• REFLECTING ON SCIENCE •

A selection of views

Science & faith Playing God Explaining life through science Reading our own code Influencing our evolution Manic depression Definitions of life Can genetics provide answers?

Still to be explored

Unused tools Future of medicine Manipulating living systems Germline therapy Redesigning organisms The future of humans

→>>> www.dnai.org

- $_$ sterilization in the USA: used as a welfare reform $\ldots\,$ Paul Lombardo
- _ eugenics in Nazi Germany ... Jim Watson
- $_$ an overview of eugenics in the USA $\ldots\,$ Jim Watson
- _ sterilization in the USA: Buck vs. Bell ... Paul Lombardo
- _ should we correct natural genetic imperfections? ... Jim Watson
- _ making life choices and economic considerations ... Benno Müller-Hill
- _ our responsibility to direct our own evolution ... Jim Watson
- $_$ confounding genetic classification with human worth \ldots Hubert Markl
- $_$ human imperfections and genetic enhancement $\ldots\,$ Jim Watson
- _ for diversity and against narrowing the options ... Kay Jamison
- _ intervening in a child's future at a genetic or social level ... Robert Plomin
- _ predictions for gene testing ... Bruce Ames
- _ his relationship with his son who has Down syndrome ... Roby Harrington
- _ testing and managing genetic disorders ... Kay Davies
- _ manic depressives: an endangered but valued species ... Kay Jamison
- _ improving our species with better education ... Hubert Markl
- $_$ creating and owning living organisms $\ldots\,$ An anda Chakrabarty
- _ a private company's approach to patenting genes ... Mark Adams
- _ on knowing the function of a gene before you patent ... Mary-Claire King
- _ on patenting genes for commercial purposes ... Mary-Claire King
- _ the human genome sequence is not a basis for a patent ... John Sulston
- _ making sequence public to pre-empt the patents ... John Sulston
- _ reconciling working in science with faith in God ... Francis Collins
- _ miracles from knowledge, not prayer ... Jim Watson
- _ reading a letter from Rosalind to her father ... Rosalind Franklin's sister
- _ reflecting on our evolution ... John Sulston
- _ eliminating faults in our genetic programming ... Raymond Gosling
- _ mental illness and complicated choices ... Kay Jamison
- _ defining what it is to be alive ... Tom Cech
- _ genetics may not provide the answers we seek ... Benno Müller-Hill
- _ gene technology and its possible uses ... Robert Pollack
- $_$ predictive and preventative personalized medicine \hdots . Leroy Hood
- $_$ manufacturing new proteins in living systems $\ldots\,$ Robert Horsch
- _ on needing to make germline therapy reversible ... Mario Capecchi
- _ technological advances may allow us to redesign life ... Leroy Hood
- _ what will humans look like in 5,000 years? ... Ananda Chakrabarty

ANIMATIONS

DNA molecule

DNA has four units Chargaff's ratios Triple helix Base pairing How DNA is packaged * DNA unzip Chromosome map How much DNA codes for protein?

Replication

Replicating the helix Mechanism of replication *

Transcription & translation

Triplet code Transcription * mRNA splicing Translation *

Experiments & techniques

Mechanism of recombination Microarray Polymerase chain reaction Sanger sequencing Public project sequencing Private project sequencing

Disease & mutation

DNA damage Sickle cell Tumor growth How Gleevec works

(*) narration options: none, basic, and advanced.

INTERVIEWS _

1)

Mark Adams Billions of bases Selecting genes to patent

Bruce Ames Mutations & cancer Weeding out disease

Emmett Barkley

Lab safety

Paul Berg

First recombinant DNA Cloning DNA in bacteria Cohesive ends & recombination

Ewan Birney

Walking down a chromosome Reading the genome Computing power Impact of the genome projects

David Botstein

Locating disease genes Cost of the Human Genome Project Opposition to the Human Genome Project

www.dnai.org -

Herbert Boyer Birth of genetic engineering The impact of cloning Why study plasmids?

Sydney Brenner **

The coding problem Defining the gene Code analogies Explaining the Central Dogma The coiled nature of DNA Cell organization

Pat Brown

Microarray analysis Gene expression patterns

Mario Capecchi

Animal models Gene switches Gene manipulation Germline therapy

2)

Tom Cech ** RNA splicing What came first: DNA or RNA? Definitions of life

Ananda Chakrabarty

Patenting living organisms The future of humans

Erwin Chargaff Chargaff's ratios

William J. Clinton The completed genome

Stanley Cohen Cross-species recombination

Francis Collins

The motivation (HGP) The challenge of gene hunting More questions than answers Science & faith

Francis Crick **

DNA: the key to understanding The fascination of science DNA's deceptive "simplicity" Understanding the brain

Kay Davies

The DMD approach Genetic screening Offering options A case for testing

Brian J. Druker

Leukemia: the Gleevec story Developing other cancer drugs

Rosalind Franklin's sister

Explaining life through science

3)

Walter Gilbert ** Gene regulation Experiments to find RNA The repressor/inducer system

David V. Goeddel

Insulin production

Raymond Gosling

Race to discover the structure Clue: position of phosphates An earlier DNA mode Clue: X-ray diffraction An elegant structure Influencing our evolution

Michael F. Hammer Tracking human history The evolutionary puzzle

Roby Harrington

Harrington family

Leroy Hood

The digital code Regulatory networks Sequencing DNA Analyzing your genes Implications for the future Future of medicine Redesigning organisms

Robert Horsch

DNA transfer: agrobacterium DNA transfer: gene gun First transgenic crop Manipulating living systems

Mike Hunkapiller

Sequencing genomes

François Jacob **

A pre-1953 notion The lac operon model

Kay Jamison

Testing for a reason Mental illness & creativity Vanilla children Protecting diversity Manic depression

4)

Alec Jeffreys DNA fingerprinting

Jim Kent

Coding vs. non-coding An important gene cluster Random mutations GM crop concerns Assembling the fragments

© Copyright 2003, Dolan DNA Learning Center, Cold Spring Harbor Laboratory. All rights reserved. Dolan

Mary-Claire King

Humans & chimps Early cancer studies Finding cancer genes Limitations of testing Hopes for the future Patenting chaos Commercial patents

Arthur Kornberg **

Enzymes: DNA polymerase Studying DNA replication DNA synthesis

Eric Lander

Bacterial vs. human genome Processing mRNA Junk DNA & evolution Smell receptors Outcome of the HGP

Paul Lombardo

Sterilization as a welfare reform The Buck vs. Bell case

Hubert Markl

Genetic pre-wiring Complex behavior Classification and value A better understanding

Maclyn McCarty DNA is the genetic material

Katreece McGhee

Living with sickle cell Inheriting sickle cell

Matthew Meselson

Replication models The correct model

5)

Benno Müller-Hill Who should decide? Can genetics provide answers?

Kary Mullis **

Polymerase chain reaction

Gene Myers

Public & private An overview (bioinformatics)

Marshall Nirenberg **

3 DNA bases = 1 amino acid Cracking the first codon Cracking the code Universal code Protein synthesis The role of the ribosome

Svante Pääbo

Neandertal DNA Neandertal & human ancestry

Scott Patterson

Proteomics

Robert Plomin

Differences & similarities Nature vs. nurture Twin studies Prediction & prevention Heritability of behaviors Basis of complex disorders Designer babies

Robert Pollack

Risks of DNA recombination Unused tools

Bud and Yvonne Romine Gleevec: first trials

Mark Skolnick

DNA variation Identifying BRCA1 Looking for BRCA2

6)

Mark Stoneking Counting DNA mutations

Chris Stringer The divergence of Neanderta

The divergence of Neandertals

John Sulston **

100 km of DNA Evolutionary relationships Human genome patents A free flow of information Reading our own code

J. Craig Venter

After the Human Genome Project Solving a problem

© Copyright 2003, Dolan DNA Learning Center, Cold Spring Harbor Laboratory. All rights reserved. Dolan

DNA Learning Center

Douglas Wallace A recent common ancestor

Jim Watson **

The answer DNA: the secret of life Cotton plants The aim (Human Genome Project) Need for an RNA template Pre-WWII German eugenics Reactions to imperfections Directing our evolution None of us are perfect American perspective Playing God **Barbara Weber** Using family trees

Mike Wigler Cancer genes

Maurice Wilkins ** Clue: X-ray diffraction

(**) Nobel Laureate

BACKGROUND BRIEFING

Animator: Drew Berry

Making 3D animations Working with scientists Using 3D models Absolute accuracy A complex animation

Teacher: Caren Gough

Teacher involvement Using the DVD Planning lessons Interviews on the DVD Ease of use

www.dnai.org

_ the process of making 3D scientific animations

- _ science as a creative career
- _ online libraries of molecules can model interactions
- _ ensuring the scientific accuracy of the models
- _creating the replication animation

_ teacher contribution to content selection

- _ planning lessons using the DVD content
- _ planning lessons using the animationsc
- _ scientist interviews provide a unique resource
- _ on expertise required to use the DVD